CHAPTER

¢

Bits and Bytes

Abit is the smallest unit of information there is. It is a single digit in the binary number
system, with the value “0” or “1”. Two aspects of a bit make it useful. First, a bit’s value
can be interpreted as anything at all by the computer. That single bit might represent
“yes” or “no,” or the presence or absence of a disk, or whether a mouse button is pressed.
Second, the values of several bits can be concatenated to represent more complex data.
Each bit that’s tacked on doubles the number of possible values that can be represented.

In other words, one bit can hold two possible values, “0” or “1”. T wo bits can hold 2x2,
or four, possible values, “00”, “01”, “10”, or “11”. Likewise, three bits can hold 2x2x2,
or eight, possible values, and so on. This characteristic is both the greatest strength and
the greatest limitation of computers. It is a strength because very complex data (such as
this book) can be stored by breaking down the information to its representation in bits.
It is a weakness because many things in real life have inexact values, which cannot be
represented in a finite number of bits.

Programmers must be constantly aware of how many bits must be used to hold each data
item. Because a bit is such a small unit, most computers are designed to handle them in
more convenient chunks called bytes. A byte is the smallest addressable unit of
information on most computers. That meansthat the computer assigns an address to each
byte of information, and it can retrieve or store information only a byte at a time. The
number of bitsin abyteisarbitrary and can be different on different machines. The most
common value is eight bits per byte, which can be store up to 256 different values. Eight
bitsisa convenient size for storing data that represents charactersin ASCII (the American
Standard Code for Information Interchange).

FREE EBOOKS, NOTES, VIDEOS &
PLACEMENT MATERIAL

For All Companies placement
Material

. i
-'r;""-!\';i B | e Tl a? s a Talal o o e Tl ol Y =
| ‘_!\:__'.'_ 'R B B .,v1| [B - B j (= | |J | .L\ ‘,----‘Il oy iy Bl Ny
. B B A N S H B e B B G S B EA od o S
- L H

For CAT Exam Preparation
Material

) t\,.':" = i o | ACCAC
o S | B "ﬁ-;_.. & :-.":sfj P) g

For GATE Exam Preparation
Material

e o N g | v gmw gmy ohe gy
)] P & :':'-:'r-.-.l-. i | & - '-:\.__' ':-F‘:‘ :l_-.n""-t' '\:':;\
- o b f G4 o o S WP

For Engineering Books &
Material

e 7] B
. Sy e T e =
s = el a Y¥a¥Ta _L Pl o
UL S IS S
bl e PolVf W W I b

Codes of Following
Programming Languages

e e e Y
e e
L o
4 -
' e
"o 5_‘\"}__. <l
L
o

Language
(= =

190

C Programming; Just the FAQs

The following program displays the ASCII character set, starting with the space character and continuing
up through the graphics character set of the PC. Note that the variable ct r must be an int and not a char
because a char consists of 8 bits and thus can hold only the values 0 through 255 (or —128 to 127 for signed
chars). If ct r were a char, it could never hold a value of 256 or greater, so the program would never end. If
you run this program on a machine other than aPC, note that the non-ASCII characters this program prints
might result in a garbled screen.

#i ncl ude <stdio. h>
voi d mai n(void);

void main()

{
/* Display ASCII char set */

unsi gned char space = ' *; /* Start with SPACE
char = 8 bits only */
int ctr = 0;

printf(“ASCI | Characters\n”);

printf(“================\n");

for (ctr = 0; ctr + space < 256; ctr++)
printf(“%”, ctr + space);

printf(“\n”);
}
Because the computer worksin chunks of bytes, most programs work this way as well. Sometimes it becomes
necessary to conserve memory space because of either the number of items to be stored or the time it takes
to move each bit of information. In this case, we would like to use less than one byte for storing information
that has only a few possible values. That’s what this chapter is all about.

X.1: What is the most efficient way to store flag values?
Answer:

A flag is a value used to make a decision between two or more options in the execution of a program. For
instance, the / w flag on the MS-DOS di r command causes the command to display filenames in several
columns across the screen instead of displaying them one per line. Another example of a flag can be seen in
the answer to FAQ IIL5, in which a flag is used to indicate which of two possible types is held in a union.
Because a flag has a small number of values (often only two), it is tempting to save memory space by not
storing each flag in its own i nt or char.

Efficiency in this case is a tradeoff between size and speed. The most memory-space efficient way to store
a flag value is as single bits or groups of bits just large enough to hold all the possible values. This is because
most computerscannot addressindividual bitsin memory, so thebit or bits of interest must be extracted from
the bytes that contain it.

The most time-efficient way to store flag values is to keep each in its own integer variable. Unfortunately,
this method can waste up to 31 bits of a 32-bit variable, which can lead to very inefficient use of memory.

Chapter X ¢ Bitsand Bytes]Q]

If there are only a few flags, it doesn’t matter how they are stored. If there are many flags, it might be
advantageous to store them packed in an array of characters or integers. They must then be extracted by a
process called bit masking, in which unwanted bits are removed from the ones of interest.

Sometimes it is possible to combine a flag with another value to save space. It might be possible to use high-
order bits of integers that have values smaller than what an integer can hold. Another possibility is that some
data is alwaysamultiple of 2 or 4, so thelow-order bits can be used to store a flag. For instance, in FAQ III.5,
the low-order bit of a pointer is used to hold a flag that identifies which of two possible types the pointer
points to.

Cross Reference:

X.2: What is meant by “bit masking”?
X.3: Are bit fields portable?
X.4: Is it better to bitshift a value than to multiply by 2?

X.2: What is meant by “bit masking?
Answer:

Bit masking means selecting only certain bits from byte(s) that might have many bits set. T 0 examine some
bitsof abyte, the byte is bitwise “ANDed” with a mask that isanumber consisting of only those bits of interest.
For instance, to look at the one’s digit (rightmost digit) of the variable f | ags, you bitwise ANDit with a mask
of one (the bitwise AND operator in C is &):

flags & 1;

To set the bits of interest, the number is bitwise “ORed” with the bit mask (the bitwise OR operator in C is
|). For instance, you could set the one’s digit of f | ags like so:

flags = flags | 1;
Or, equivalently, you could set it like this:
flags |= 1;

To clear the bits of interest, the number is bitwise ANDed with the one’s complement of the bit mask. The
“one’s complement” of a number is the number with all its one bits changed to zeros and all its zero bits
changed to ones. The one’s complement operator in C is ~. For instance, you could clear the one’s digit of
f1ags like so:

flags = flags & ~1;
Or, equivalently, you could clear it like this:
flags & ~1;

Sometimes it is easier to use macros to manipulate flag values. Listing X.2 shows a program that uses some
macros to simplify bit manipulation.

192 C Programming; Just the FAQs

Listing X.2. Macros that make manipulating flags easier.
/* Bit Masking */

/* Bit masking can be used to switch a character
bet ween | owercase and uppercase */

#define Bl T_PCS(N) (U << (N))
#define SET_FLAG N, F) ((N |=(F))
#define CLR_ FLAG N, F) ((N & -(F))
#define TST_FLAG N, F) ((N & (F))
#define BI T_RANGE(N, M (BIT_POS((M+1 - (N)-1 << (N))
#define BIT_SH FTL(B, N) ((unsigned)(B) << (N)
#define BIT_SH FTR(B, N) ((unsigned)(B) >> (N))
#define SET_MFLAGN, F, V) (CLR_FLAG N, F), SET_FLAGN, V))
#define CLR_MFLAG(N, F) ((N & ~(F))
#define GET_MFLAG N, F) ((N & (F))
#i ncl ude <stdio. h>
voi d main()
{
unsi gned char ascii_char = ‘A ; /* char = 8 bits only */

int test_nbr = 10;
printf(“Starting character = %\n”, ascii_char);

/* The 5th bit position determines if the character is
upper case or |owercase.
5th bit = 0 - Uppercase
5th bit =1 - Lowercase */

printf(“\nTurn 5th bit on = %\n”, SET_FLAG ascii_char, BIT_POS(5)));
printf(“Turn 5th bit off = %\n\n”, CLR FLAG ascii_char, BIT_POS(5)));

printf(“Look at shifting bits\n”);

printf(” \n”);

printf(“Current value = %\n”, test_nbr);

printf(“Shifting one position left = %\n”,
test_nbr = BIT_SH FTL(test_nbr, 1));

ntf(“Shifting two positions right = %l\n",
BI T_SH FTR(test _nbr, 2));

pr

BI T_POS(N) takes an integer Nand returns a bit mask corresponding to that single bit position (Bl T_PCS(0)
returnsabit mask for the one’s digit, Bl T_PCS(1) returnsabit mask for the two’s digit, and so on). So instead
of writing

#define A FLAG 4096
#define B_FLAG 8192

Chapter X ¢ Bitsand Bytes]QS

you can write

#define A FLAG BIT_POS(12)
#define B_FLAG BIT_POS(13)

which is less prone to errors.

TheSET_FLAG(N, F) macro setsthebit at position F of variable N. Its oppositeisCLR_FLAG(N, F), which clears
thebit at position F of variable N. Finally, TST_FLAG(N, F) can be used to test the value of the bit at position
F of variable N, as in

if (TST_FLAG flags, A FLAG)
/* do something */;

ThemacroBI T_RANGE(N, M produces abit mask corresponding to bit positionsN through M inclusive. With
this macro, instead of writing

#define FIRST_OCTAL DIGT 7 /111
#define SECOND CCTAL_DIG T 56 /* 111000 */

you can write

#define FIRST_OCTAL_DIA T BIT_RANGE(O, 2) /o111)
#define SECOND CCTAL_DI G T Bl T_RANCGE(3, 5) /* 111000 */

which more clearly indicates which bits are meant.

The macro BI T_SHI FT(B, N) can be used to shift value B into the proper bit range (starting with bit N). For
instance, if you had a flag called C that could take on one of five possible colors, the colors might be defined
like this:

#define C_FLAG Bl T_RANGE(8, 10) /* 11100000000 */

/* here are all the values the C flag can take on */

#define C_BLACK BI T_SHI FTL(0, 8) /* 00000000000 */
#define C_RED BI T_SHI FTL(1, 8) /* 00100000000 */
#def i ne C_GREEN BI T_SHI FTL(2, 8) /* 01000000000 */
#define C_BLUE BI T_SHI FTL(3, 8) /* 01100000000 */
#define C_WH TE BI T_SHI FTL(4, 8) /* 10000000000 */
#define C_ZERO C_BLACK

#def i ne C_LARCEST C WH TE

/* A truly paranoid programrer mght do this */
#if C_LARCEST > C_FLAG
Cause an error nessage. The flag C FLAG is not
bi g enough to hold all its possible values.
#endif /* C_LARCGEST > GC_FLAG */

Themacro SET_MFLAG N, F, V) setsflagF in variable Nto the value V. Themacro CLR_MFLAG(N, F) isidentical
to CLR_FLAG(N, F), except the name is changed so that all the operations on multibit flags have a similar
naming convention. The macro GET_MFLAG N, F) gets the value of flag F in variable N, so it can be tested,
asin
if (GET_MFLAGflags, C_FLAG == C_BLUE)

/* do something */;

C Programming; Just the FAQs

NOTE

Beware that the macros BI T_RANGE() and SET_MLAG) refer to the N argument twice, so
the expression

SET_MFLAG *x++, C_FLAG C_RED);

will have undefined, potentially disastrous behavior.

Cross Reference:

X.1: What is the most efficient way to store flag values?
X.3: Are bit fields portable?

X.3: Are bit fields portable?
Answer:

Bit fields are not portable. Because bit fields cannot span machine words, and because the number of bits
in a machine word is different on different machines, a particular program using bit fields might not even
compile on a particular machine.

Assuming that your program does compile, the order in which bits are assigned to bit fields is not defined.
Therefore, different compilers, or even different versions of the same compiler, could produce code that
would not work properly on data generated by compiled older code. Stay away from using bit fields, except
in casesin which the machine can directly addressbits in memory and the compiler can generate code to take
advantage of it and the increase in speed to be gained would be essential to the operation of the program.

Cross Reference:

X.1: What is the most efficient way to store flag values?
X.2: What is meant by “bit masking?

X.4: Is it better to bitshift a value than to multiply by 2?
Answer:

Any decent optimizing compiler will generate the same codeno matter which way youwriteit. Usewhichever
form is more readable in the context in which it appears. The following program’s assembler code can be
viewed with a tool such as CODEVIEW on DOS Windows or the disassembler (usually called “dis”) on
UNIX machines:

Chapter X ¢ Bitsand Bytes]Q5

Listing X.4. Multiplying by 2 and shifting left by 1 are often the same.

void main()

{

unsigned int test_nbr = 300;
test_nbr *= 2;

test _nbr = 300;
test_nbr <<= 1;

Cross Reference:

X.1: What is the most efficient way to store flag values?

X.5: What is meant by high-order and low-order bytes?
Answer:

We generally write numbers from left to right, with the most significant digit first. T o understand what is
meant by the “significance” of a digit, think of how much happier you would be if the first digit of your
paycheck was increased by one compared to the last digit being increased by one.

The bits in a byte of computer memory can be considered digits of a number written in base 2. That means
the least significant bit represents one, the next bit represents 2x1, or 2, the next bit represents 2X2x1, or
4, and so on. If you consider two bytes of memory as representing a single 16-bit number, one byte will hold
the least significant 8 bits, and the other will hold the most significant 8 bits. Figure X.5 shows the bits
arranged into two bytes. The byte holding the least significant 8 bits is called the least significant byte, or
low-order byte. The byte containing the most significant 8 bits is the most significant byte, or high-
order byte.

) High Croder Byke Lo Crder Byie
Figure X.5. e e

The bitsin a two-byte integer.

BIMS: 4131211109 & ¥ 6 54 35210

Cross Reference:

X.6: How are 16- and 32-bit numbers stored?

196

C Programming; Just the FAQs

X.6: How are 16- and 32-bit numbers stored?
Answer:

A16-bit number takes two bytes of storage, a most significant byte and aleast significant byte. The preceding
FAQ (X.5) explains which byte is which. If you write the 16-bit number on paper, you would start with the
most significant byte and end with the least significant byte. Thereisno convention for which order to store
them in memory, however.

Let’s call the most significant byte Mand the least significant byte L. There are two possible ways to store
these bytes in memory. You could store Mfirst, followed by L, or L first, followed by M Storing byte Mfirst
in memory is called “forward” or “big-endian” byte ordering. The term big endian comes from the fact that
the “bigend” of the number comes first, and it is also a reference to the book Gulliver’s Travels, in which the
term refers to people who eat their boiled eggs with the big end on top.

Storing byte L first is called “reverse” or “little-endian” byte ordering. Most machines store data in a big-
endian format. Intel CPUs store data in a little-endian format, however, which can be confusing when
someone is trying to connect an Intel microprocessor-based machine to anything else.

A 32-bit number takes four bytes of storage. Let’s call them Mn M, Lm and LI in decreasing order of
significance. There are 4! (4 factorial, or 24) different ways in which these bytes can be ordered. Over the
years, computer designershave usedjust about all 24 ways. T he most popular two waysin use today, however,
are (M M, Lm LI), which isbig-endian, and (LI, Lm M , Mv), which islittle-endian. As with 16-bit numbers,
most machines store 32-bit numbers in a big-endian format, but Intel machines store 32-bit numbers in a
little-endian format.

Cross Reference:

X.5: What is meant by high-order and low-order bytes?

http://www.tcpdf.org

